Novel Noninvasive Neuromodulation

Electrophysiological Source Imaging Guided Transcranial Focused Ultrasound

Neuromodulation is a fast growing field that offers a wide range of applications for both understanding and treating the brain. Future research for non-invasive neuromodulation will need to elucidate the optimal frequency, duration, and intensity of stimulation for a variety of technologies and diseases. Closed loop stimulation is thus a promising research area that allows for responsive stimulation and real time symptom management. Our project is proposed to develop and test a novel noninvasive neuromodulation integrating transcranial focused ultrasound stimulation (tFUS) with electrophysiological source imaging (ESI-tFUS) to allow evidence-based neuromodulation for brain research and the management of brain conditions. Despite the recent developments and attention surrounding tFUS, relatively little is known about the mechanisms and optimal parameters of this stimulation technology. The addition of ESI neuroimaging, aimed at providing biomarkers to assess the effects of tFUS neuromodulation, could provide crucial necessary information regarding the neural response to the applied stimulation in real-time. In order for tFUS to be further developed and transformed into a robust neuromodulation technology, an integrated electrophysiological source-imaging-guided tFUS system to allow for individualized and responsive stimulation is needed. The purpose of this study is to develop and evaluate the proposed ESI-tFUS in human subjects using motor and somatosensory paradigms.

No pharmaceutical medication involved
Patients and healthy individuals accepted

Device - Ultrasound

Low-intensity (Ispta < 720 mW/cm2, Isppa < 190 W/cm2) transcranial focused ultrasound

Electrophysiological Source Imaging Guided Transcranial Focused Ultrasound